Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

نویسندگان

  • S. Ouadah
  • J. Webster Stayman
  • Grace J. Gang
  • Ali Uneri
  • T. Ehtiati
  • Jeffrey H. Siewerdsen
چکیده

Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective One Step-iterative Fiducial Marker-based Compensation for Involuntary Motion in Weight-bearing C-arm Cone-beam CT Scanning of Knees

We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients’ involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D wa...

متن کامل

Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motionrelated artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreov...

متن کامل

A feasibility study on the use of MV-CBCT images for urgent palliative treatment planning

Introduction: The application of 3D volumetric imaging modalities in treatment planning of radiation therapy can provide more precisely define tumor localization, and computed tomography (CT) is the most common accepted method for treatment planning. Given the lack of a CT scanner stationed in all radiotherapy departments and equipping most of the medical linear accelerators wi...

متن کامل

Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality

Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...

متن کامل

Enhancement of mobile C-arm cone-beam reconstruction using prior anatomical models.

We demonstrate an improvement to cone-beam tomographic imaging by using a prior anatomical model. A protocol for scanning and reconstruction has been designed and implemented for a conventional mobile C-arm: a 9 inch image-intensifier OEC-9600. Due to the narrow field of view (FOV), the reconstructed image contains strong truncation artifacts. We propose to improve the reconstructed images by f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 9415  شماره 

صفحات  -

تاریخ انتشار 2015